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Transport and Percolation in Disordered Systems-- 
A Self-Consistent Time-Local Approach 

Johan Nieuwoudt  ~ and Shaul Mukamei ~'2 

A new self-consistent equation for the transport of excitations in disordered 
systems, which forms the basis for a new class of time-domain coherent 
potential approximations, is developed. As an example, we calculate the 
probability of remaining in the original site Go(t ) as well as the second moment 
of the distribution of excitations (r2(t)) for a random mixture of donors which 
satisfy a master equation with short-range transition rates. A percolation-type 
transition is observed and its characteristics are analyzed both above and below 
the transition point. 
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Transport properties of disordered systems such as electron transfer, exciton 
migration, etc. are of considerable current interest both experimentally and 
theoretically. ~1-8) Master equations with random transition rates are widely 
used in these studies. ~2) Lattice models involving site or bond disorder are 
known to exhibit a percolation-type transition whereby the long-time 
behavior of the system undergoes a phase transition from a "localized" to an 
"extended" type, as the degree of disorder is varied. ~9-12) A new type of 
reduced equations of motion which are time local was introduced recently 
toward the theoretical treatment of transport in disordered systems. ~13) In 
this approach, we postulate that the ensemble-averaged quantities (e.g., 
survival probability in a trapping problem) obey an equation of the type 

d(P) 
d--~ = - - K ( t ) ( P ( t ) )  ( la)  
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This form is different from the more conventional memory-type equation 

_ _ ( ,  a ,  g ( t  - , ) ( e ( , ) )  ( l b )  
dt -- 2o 

Equations of the form (la) were found recently extremely useful in the 
studies of systems with fractal geometry. (14-1s) In this paper we develop a 
self-consistent equation (SCE) for the transport in disordered systems based 
on the time-local formalism. Our SCE provides a new kind of effective 
medium approximation which allows a systematic calculation of the time- 
dependent kernels K(t). We apply it to a simple continuum master equation 
model with short-range transition rates. A percolation-type transition is 
found and the long-time (and dc conductivity) properties of the system are 
analyzed. 

We consider a system of N particles distributed randomly in a volume 
V. At time t = 0, one particle located at the origin is excited. The excitation 
can hop among the particles according to the master equation 

d N 
-~Pi  = ~ Wij(Pj-  P~) (2) 

j = l  

Pi is the probability of finding the excitation on the ith particle. Wij =- W(rii ) 
depends only on the distance rij between the ith and the j t h  particles. We 
shall be interested in calculating (P(r, t)), i.e., the probability of finding the 
excitation at point r at time t, averaged over all possible configurations of 
the random system. In particular we consider the probability of the 
excitation to remain on the initially excited particle Go(t ) - ~P(r = 0, t)), and 
the second moment of the distribution of excitations: 

(rZ(t)) -- f dr r2(P(r, t)) (3a) 

The latter quantity is related, in frequency space, to the diffusion coefficient 
D(e) by the relation 

f0 ~ 2d (r2(e)) -- dr exp(-er)(rZ(r)) = -~ -D(e)  (3b) 

where d denotes the number of dimensions of the system. Of special interest 
is the long-time behavior of these quantities and its dependence on the form 
of the transfer rate W(r). 
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We have derived a new type of self-consistent equation (SCE) for Go(t) 
using the time-local reduced equation of motion. (13) The input to the SCE is 
a "naive" expansion of Go(t ) in the density of particles p = N/V, 

Go(P, t)= 1 + ~, pnB(')(t) (4) 
n = l  

and each B (') may be obtained by solving a problem with n + 1 particles. 
When using a cumulant expansion G o assumes the form 

Go(P, t) = exp [ - f l  dz(t -- V) Fl(p, v) ] (5) 

where F 1 may be expanded in density, i.e., 

FI(P, t)= ~ p'F]"(t) (6) 

The coefficients F~')(t) are straightforwardly obtained by expanding (5) in 
powers of density and comparing with (4). We are now in the position to 
derive a resummed expression by F z [Eq. (5)] which will hold for high 
densities. This is done by making the following ansatz: 

F(p, Go(P, e)) -- F~ (P, + )  (7) 

where 

;o F, , =- e- ~' F,(p, t) dt (8) 

and 

Go(e) = e-~t Go(t ) dt (9) 

This ansatz is analogous to that made by GAF (6) using the more conven- 
tional memory-type equations. We feel that the time-local approach is to be 
preferred in this case since in the Forster problem, e.g., when we have one 
donor + N  traps, F is rigorously first order in density, whereas the 
corresponding memory kernel is infinite order in density. A detailed 
discussion of this point was given recently. (13) A comparison of this type of 
density resummations (for the memory-type equations) with the mean field 
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CPA (5'7) was also made. (ag) In order to get an expression o f F  we make use 
of the density expansion F and of G 0, i.e., 

and 

cx~ 

F(p, Go) = ~ p"F(")(Go(P, e)) (10a) 
n = l  

_!_ 1 
Go( p, e) = + ~ p"B(")(c) (10b) 

C n = l  

Upon expansion of F (") in powers of (G o - l/e) and making use of the 
known coefficients B (") we obtain a systematic density expansion of F(p, Go). 
To first order in density we then get 

p ~ exp(iet) W(r) .] 
G0( t )=ex  p --f-~ f 2 de e3 f dr l + 2W(r) Go(ie)j (11) 

Equation (i 1) is our final SCE which should be solved for G 0. 
A resummed expression for the second moment is obtained by using a 

similar procedure. This time, the input is the naive expansion of the entire 
Green's function G(r, t ) =  (P(r,t)). It is convenient to work with the 
transformed Green's function 

So J G(k, e) = e-adt  dretkrG(r,t) (12) 

for which the naive expansion is known, (4) i.e., 

o(3 

G(k, e) = 1 + ~ p"b(")(k, e) (13) 
n = l  

When using the cumulant expansion, Eq. (13) assumes the form 

p oo 
G(k, t ) =  exp [-~--I_oo ~-5-kde 2D, (k, P' ~-e)exp(iet)] (14) 

In analogy with Eq. (7) we now define a new kernel D(k, p, G0( p, e)) such 
that 

D(k,p, Go(P, ~)) =- DI(k,P, l/e) (15) 

so that the second moment [Eq. (2)] is given by 

(r2(~)) = 2-~-d D(0, Go(~)) (16) 
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A systematic expansion for D may be obtained if we proceed along the same 
lines which led to the expansion of F. To lowest order in density this yields 

f ~ de exp(uet) f W(r) 
(r2(t)) = - P  2re ~2 dr r 2 _~ 1 + 2W(r) Go(ie ) 

(17) 

Our final procedure is thus to solve Eq. (11) for G O and then, upon the 
substitution of the result in Eq. (17) we get (r2(t)). Note that we do not need 
the expansion of G [Eq. (13)] in order to get the SCE for G 0. In this respect, 
our procedure is impler than the analogous deviation of GAF.(6) 

We have solved our SCE [Eq. (11)] using the following model for 
W(r): 

r ~ r  o 
W ( r ) =  1 ' ~  (18) 

{0, r >  r o 

This model represents the universality class of short-range transfer rates 
W(r) with cut-off, and is similar to a lattice percolation model. Hereafter, we 
shall switch to dimensionless time and frequency units by taking W 0 = 1. 

For this model Eq. (11) assumes the form 

I c f  ~ & 1 ]  
Go(t ) --  exp ~ _oo ~ exp( i~t )  �9 1 + 2G0(ie  ) (19) 

Here V a is the volume of a d-dimensional sphere of radius r 0 and c =-pV a is 
the number of particles in that volume. Also in this case Eq. (6) results in 

d 
(r2(t)) - d + 2 r2 in Go(t ) (20) 

Note that this relation holds only for our particular model (18) within the 
two-body (lowest order in density) approximation. This is not a universal 
relation and is very different from the simple scaling relation (2'13'2~22) 

2 Go(t)- z/a (r2(t)) = r o (21) 

It is not clear at present which approximation [(20) or (21)] is more 
realistic. The solution of Eq. (11) for long times may be obtained by 
postulating the asymptotic form 

Go(t ) ~ A exp(-Bt) ,  r ~ m (22) 
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Upon substitution of Eq. (22) into (19) and considering the long time limit, 
we obtain 

A exp(-Bt) = exp ~ B ~ )  (23) 

Two cases will now be considered, for B = 0 Eq. (23) yields 

A = e x p ( - e / 2 A )  (24) 

which can be solved iteratively, resulting in 

A = e x p  --~-X 

I)) 
(25a) 

(25b) 

For B ~ 0 Eq. (23) results in 

B = e - -  2A 

and 

(26a) 

A = e x p ( - 2 A / e )  (26b) 

whose iterative solution is 

Equations (25) and (27) clearly show the existence of a percolution-type 
critical point at c*-= 2/e for which A * =  1/e and B * =  0. Below the critical 
point, c < e*, the appropriate solution is given by Eq. (25) since Eq. (26) 
gives an unphysical solution whereby B is negative. In this region, A, as 
given by Eq. (25), varies from A = 1 for c = 0 to A = 1/e for e = e*, and the 
long-time solution is "localized." [Both Go(t ) and (r2(t)) tend to a finite 
nonzero value at long times.] On the other hand for e > e* the solution is 
"extended" since by Eqs. (26) and (27) both A and B assume finite, 
nonnegative values. In Figure 1, we present the solution of Eqs. (24) and 
(26) for A and B which gives the long-time behavior of Go(t ). 

We have further solved our SCE [Eq. (11)] iteratively in order to get 
the entire time dependence of Go(t ). The iteration is done by taking a zero- 
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Fig. 1. Solutions of Eq. (23) above and below the critical point c* = 2/e. A and B are 
related to the asymptotic form Go(t ) HA exp(--Bt) as t ~  oo [Eq. (22)]. For c < c*, B = 0 and 
G0(ov) is finite or "localized," whereas for c > c*, Go(t ) decays exponentially and the solution 
is "extended." 

order  approx imat ion  for Go(t), and substi tut ing it in the r ight-hand side of  
Eq. ( I1) .  The resulting Go(t ) is subsequently substi tuted back  into Eq. (11) 
and the procedure  is repeated until it converges. 

For  c < c* we have used Go(t ) =A as the zeroth i terat ion where A is 
given in Fig. 1. The first i terat ion then becomes 

Go(t)=exp l--~A [1--exp(--2At)] I (28) 

which is found to be a reasonable  approx imat ion  for Go(t ) for c < c*. For  
c > c* we have used Go(t) =A e x p [ - - ( c - -  2A)t ]  as a zeroth i terat ion where 
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given in Fig. 1. The first iteration, which is again found to be a 

6 8 4  

A is 

reasonable approximation for Go(t ) , is 

G0(t) = exp l_(c_2A)t___2,4c [1 - exp(-2ct)]I (29) 

The converged solutions of our SCE both above and below the transition are 
shown in Fig. 2. In conclusion we shall summarize the general characteristics 
of our solutions: 

t 
2 4 6 8 

1.00 �9 , , , . . . . .  

0 . 7 5  
. . . . . . . . . .  (a) 

Q 0.50-41 \ \\<~~ 

0.25 

0 

, ~ . . . .  (b) ~  

�9 (d)  

I I 

i 3 4 
(C- C*) t 

Fig. 2. The converged solutions of the SCE [Eq. (19)] I410= 1. The dashed curves 
correspond to c < r and the time axis is shown on the top of the figure. The various curves 
correspond to different values of e * - - e :  (a) 0.24, (b) 0.1, (c) 0.01, (d) 0.0001. The solid 
curves are for c > e*. The time axis shown on the bottom of the figure is scaled by (c -- e*). 
The values of c - - e *  are (a ')  2.26, (b ')  1, (c ')  0.1, (d ')  0.01. 
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(a) The long-time ( t ~  oo) behavior of Go(t ) is 

IA c < c *  
G~ ~ exp[-(c - 2A)t], c > c* 

(30) 

where A is a function of c is shown in Fig. 1. 

(b) The long-time behavior of the second moment is 

d 
d + 2  r21nA' c < c* 

@2(0 ) 
d 

d + 2 rz(e - 2A)t, c > c* 

(31) 

(c) The low-frequency limit of the diffusion coefficient close to the 
critical point is 

er~ 
c<c* 

2(d + 2) '  
D ( c )  ~ 

1 
- -  ( c -  c * ) r ~ ,  c > c*  
4(d + 2) 

(d) The critical exponents of A and B near the critical point are 

(A - A * ) -  
(e - c*)/4, c > c* 

(32) 

(33) 

B ~ (c  - c * ) / 2  c > c *  

The exponent 1 for B is characteristic of mean field theories. "~ 

(e) The small and large concentration limits of A and B are 

(34) 

A m  t 1 --c/2,  c--*O (35) 
1 2/e ,  c ~ oo 

B ~  t 0, c - + 0  (36) 
c - -2 ,  c-~ oo 
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